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Abstract 
The performance evaluation of A T M  switches is of 

paramount importance in  designing an A T M  network. In  
this paper, we focus on the evaluation of the cell loss rate 
(CLR)  in nonblocking ATM switches using computer sim- 
ulations. In  particular, we investigate the potential of us- 
ing importance sampling techniques as an “superfast” al- 
ternative to conventional Monte Carlo simulation in  find- 
ing the CLR in nonblocking ATM switches. W e  propose 
a “split switch” method to  decouple the input and out- 
put queue behaviors, along with the notion of regenerative 
cycles to achieve fast and accurate results. Numericd re- 
sults will demonstrate that considerable computation cost 
can be saved using these proposed importance sampling 
techniques while maintaining a high degree of accuracy. 

1 Introduction 
The Asynchronous Transfer Mode (ATM) has widely 

been adopted as the transfer mode solution for future 
broadband ISDN. One of the most crucial design com- 
ponents of an ATM network is the ATM switch. Ac- 
cordingly, a large number of architectures have been pro- 
posed for ATM switching systems. Among these architec- 
tures, nonblocking space-division switches have received 
the most attention because they present the best compro- 
mise in terms of hardware cost and switching performance 
[l, 21. However, with this architecture come various chal- 
lenges. For example, a cost-effective selection of speed-up 
parameters as well as a proper selection of buffer sizes 
should be carefully considered in these nonblocking ATM 
switches to guarantee a specified Quality of service (Qos) 
requirement for a given traffic (i.e., cell loss rate (CLR), 
maximum delay and delay jitter, etc.). 

In this research, we focus on the performance of ATM 
switches with respect to CLR. Particularly, we consider 
the effects of speed-up factor and buffer sizes on the CLR 
of nonblocking ATM switches. These are clearly such im- 
portant issues in the switch design that a sizable amount 
of work has been done on the CLR analysis [3-51. Since 
ATM networks are intended for the transport of a variety 
of services with complex traffic conditions, it follows that 
closed form and/or tractable analytical solutions for ATM 
networks are quite difficult to obtain without resorting to 
some approximation [3]. 

Conventional Monte Carlo (MC) simulations offer us 
an attractive alternative for the estimation of the CLR of 
nonblocking ATM switches. Unfortunately, the required 
CLR for a typical ATM switch is smaller than for 
most practical applications. Hence, a prohibitive num- 
ber of simulation trials must be used to obtain accurate 
estimate of CLRs for a particular accuracy. 

*Supported in part by Hong Kong UGC grant under HKUST 
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Importance Sampling (IS) [6-81 is one of the most 
promising techniques which can significantly reduce the 
simulation run time required to obtain accurate estimates. 
Specifically, the underlying probability distribution of the 
system inputs is replaced by another biased probability 
distribution which “favors” the occurrence of rare and 
important events such as cell loss. The IS estimator then 
weights the simulation data by an appropriate likelihood 
ratio in order to get an unbiased estimate. 

In this paper, we illustrate the use of IS for the efficient 
and accurate estimation of the CLR in nonblocking ATM 
switches. It must be noted that the application of IS to 
the estimation of the CLR in ATM switches has been con- 
sidered in [5, 71. However, in these previous works, the 
switch model was a space-division ATM switch with only 
output queues. In our work, we consider the more prac- 
tical case of ATM switches with both input and output 
queues, thereby, making our cell loss analysis more com- 
plicated than output-queued switches. This is because we 
have to confront the correlation between the HOL cells in 
different input queues, which remains the most obstacle 
in the analysis. 

The rest of the paper is organized as follows. Section 
2 gives a brief introduction of IS and regenerative sim- 
ulation of rare events. Section 3 presents our proposed 
IS approaches for the simulation of ATM switches with 
both input and output queues using the notion of “splzt 
switch” model. Sample simulation results which illustrate 
the accuracy and efficiency of the proposed schemes are 
also included. Finally, we conclude in Section 4. 

2 Importance Sampling 
2.1 Monte Carlo Simulation 

To illustrate the major problem of simulating a rare 
event by MC method, consider the following simplified 
example. Let X be a random variable with probability 
density function (p.d.f.) f ( z )  and suppose that we are 
interested in estimating the probability, a, that X is in 
some set or event E.  That is, 

where the integral in the above expression can be replaced 
by a summation in the case of a discrete random variable. 
The variable IE (.) is the indicator random variable of the 
set E .  That is, I E ( z )  = 1 if z E E .  Otherwise, I E ( z )  = 0. 

Using MC simulation, the estimator for ct is simply the 
sample mean estimator which generates L,, i.i.d. (in- 
dependent and identically distributed ) random samples 
X(l) ,  ...,X(Lmc) from the density f(.), and computes the 
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MC estimate of a as 

Note that if Q is small, then we would not expect to “hit” 
the set E very often during the L,, simulations. This 
then would require that L,, must be very large to insure 
that & is close to a. Normally, 10O/cy samples are required 
to guarantee a 10% confidence interval. 
2.2 Importance Sampling 

Let f’ (.) be a new probability density function such 
that f’(z) > 0 whenever f(z) > 0. Importance sampling 
involves choosing f’ (.) as the simulation density (instead 
of the true density f(.)) and observing that Eqn. (1) can 
be rewritten as 

Q = 1 I ~ ( ~ ) w ( z ) f ’ ( z )  dz (3) 

where w(.) is the likelihood ratio of the true density f(.) 
to the new density f’ (.). That is, 

(4) 

Importance sampling can now be obtained by an “em- 
pirical evaluation” of the integral (3) instead of (1) .  For 
l = 1,  ... ,L i s ,  one generates a sequence of i.i.d. random 
numbers X ( ’ ) ,  ..., X(Las) from the IS simulation density 
f * (.). The IS estimator for Q is 

(5) 

and it can be proved that &* is an unbiased estimator. 
Typically, there are two commonly used figures of merit 

for IS schemes. One is accuracy, which is defined as the 
estimator standard deviation as a percentage of the true 
estimate. Generally, a 10% accuracy is often used as the 
performance measure. The other is the eficiency, which 
is defined as the ratio of sample size in MC to that in IS 
required to achieve the same accuracy. 
2.3 Regenerative Simulations 

The regenerative method is a simulation technique 
which is often used in the simulation of stochastic sys- 
tems and in particular for the estimation of the steady 
state performance of such systems [9]. The basic princi- 
ple is that there exists a sequence of random times, called 
regenerative times, such that at  each of these times the 
random process starts anew according to the same prob- 
ability structure. 

The significance of the regenerative method is that ob- 
servations or realizations obtained from different regen- 
erative cycles are i.i.d.. Thereby, estimates can be made 
cycle by cycle, which makes the application of IS more 
manageable. In this paper, we will combine the concept 
of the regenerative method with IS to find CLR in a non- 
blocking ATM switch. The CLR, y, will be defined as 

average number of arriving cells in a cycle. That is, 
the ratio of average number of lost cells in a cycle to the 

. (6) 
E[Number of cells lost in a cycle] 

E[Offered cells in a cycle] 

3 Fast Estimation Of CLR 
In this section, we consider the application of IS to the 

estimation of the CLR in input/output queuing nonblock- 
ing ATM switches. We denote N as the switch dimension, 
K ,  L as the input and output queue capacity, respectively, 
and m as the speed-up factor. We begin by considering 
ATM switches with only output queues. Some IS schemes 
developed in this case can be applied to the more compli- 
cated case of estimating the CLR of ATM switches when 
both input and output queues are present. In our work, 
the traffic is assumed randomly uniform with traffic load 
A. In practice, the traffic characteristics rarely comply to 
this assumption. However, our major focus in this pa- 
per is to investigate the potential of using IS in the CLR 
estimation of ATM switches and develop some useful IS 
schemes, which yields much insight into the practical case. 
3.1 Output-Queued ATM Switches 

Under the uniform traffic assumption, the arrival pro- 
cess at  each input port has the binomial distribution 

N-k  

p k  = pr(Ak = k )  = ( y )  ($)k(l - Iv) , k = 0, ..., N (7) 

where A; denotes the number of cells destined for a par- 
ticular output port i in the n-th slot. In this model, up to 
m cells are to be selected randomly if Ak > m. The rest 
of the cells are lost since there is no input queues. Fur- 
thermore, if the selected cells do not find enough space in 
the output queue, they will also be lost. 

A close observation of Eqn. (7) reveals that the only 
randomness in the system is the arrival process. Hence, 
an intuitive way of applying IS in this application is to 
use a biasing model which increases the arrival of cells. 
Three different biasing schemes will be investigated in this 
section. A comparison of the efficiency of these schemes is 
also undertaken. Throughout Section 3,  the regenerative 
cycle is defined as the time interval between two successive 
points when the tagged queue is emptied. The biased 
distribution is used at  the beginning of each cycle, and 
then we switch to the original distribution when cell loss 
occurs. This is done to keep the system stable as well as 
to make the length of regenerative cycles finite. 

A. Direct Bias 
Intuitively, a larger traffic load can generate more cells 

into the switch, thereby, “forcing” more cells to be lost. 
To do so, one can bias the arrival process by using a 
new arrival rate A* > A so that the biased governing 
distribution under the IS model is given by 

N - k  N A* 
= ( k ) ( z ) k ( l  - z) , k = O , l ,  ..., N .  (8) 

The bias parameter A’ should be selected to achieve 

B. Exponential Bias 
In many previous efforts, the exponential twisting has 

been shown to be an asymptotically optimal biasing 
method among a large class of sampling distributions. Be- 
cause of the optimality of the exponential twisting which 
involves an exponential change of measure, one can argue 
that a biasing approach which weights the probability Pk 
by an exponential bias can be employed. That is, 

the smallest estimate variance. 

, k = 0,  1, ..., N c k P k  Pi = E:o EiP i  
(9) 

‘Throughout the paper, the superscript * indicates the distribu- 
tion under the biased IS model 
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where is the bias parameter. Similar to the case of 
the direct bias, the performance of this methodology will 
depend on the choice of E .  

C. Uniform Bias 
In the original binomial distribution, only 0 or 1 cell 

arrives at the tagged output queue in a slot most of the 
time, which essentially makes no contribution to the esti- 
mate of cell loss. The uniform bias ensures that the cell 
sources have an equal probability to generate 0,1, ..., N 
cells in a slot. That is, 

k = O , l ,  ..., N .  
1 

( N  + 1)’ 
Pi = - 

The key advantage of the uniform bias is that there is 

D. Figure of Merit and Comparison 
Fig. 1 shows some simulation results which illustrate 

the accuracy and potential of the proposed IS methods. 
It lists the IS estimates of the CLR of an ATM switch 
with X = 0.4 , N = 8 and L = 10 as a function of the 
speed-up factor m. These IS estimates were obtained us- 
ing the above IS methods. For comparison, we also list 
the CLR of the above switch that were obtained using 
conventional MC simulation (using the original unbiased 
model). As can be easily seen, our IS results are in excel- 
lent agreement with the MC results, which are indicative 
of the exact and true system performance. 

no need to find an optimal bias parameter. 

Figure 1: CLR estimation for output-queued switch, X = 
0.4 , N = 8 and L = 10. 

To further illustrate the efficiency of the proposed IS 
methods, we present in Table 1 the computational cost 
in terms of the number of cell slots generated during the 
simulation to achieve a 10% accuracy. In this table, the 
switch parameters are the same as those in Fig. 1 with 
the speed-up factor set to 5. The CLR obtained using 
MC method (denoted as y in Table 1) was found to be 
9 . 6 2 ~  lom7 and the number of cell slots required to achieve 
a 10% accuracy was 7.5 x lo8. The estimates obtained 
from the different IS methods (denoted as 9 are also 
shown in Table 1 along with the number of ce 1 1 slots re- 
quired to achieve a 10% accuracy during the IS simulation 
trials. Using the number of slots one can then compute 
the amount of improvement that IS provides. A close ob- 
servation of Table 1 indicates that all IS schemes result 
in large computational savings. 

Table 1: The precision and improvement with IS (A = 
0.4, N = 8, L = 10 and m = 5) 

lasing recision ciency 
Scheme 

Direct Bias 5.4% 
Exp. Bias 1.6% 

Uniform Bias 

3.2 ATM Switches with Both Input and 

In this case, it may be lost at both input and out- 
put queues when the cell coming to the input and output 
queues find no space for it. We denote the total number 
of arriving cells at the switch as N ,  and the number of 
lost cells due to input and output queue overflow as Ni 
and No. Thus, the CLR for the input queue is yi = 
and that for the output queue is yo = (Na2N,j. Since Ni 
is quite small compared with N , ,  we can obtain the CLR 
for the whole switch as y = 9 e yi + yo without loss 
of accuracy. 

One of the key contributions in this paper is the pro- 
posal of a “split switch” model, which estimates yi and 
yo, respectively, then combine them to get the overall 
result. However, yi (yo) is not the CLR of the conven- 
tional ATM switch with only input (output) queues. In 
our “split switch” model, two variants of input/output 
queuing schemes, named VIQ (Variant of Input Queu- 
ing) and VOQ (Variant of Output Queuing), as shown in 
Fig. 2, are developed to precisely describe the original 
switch model. 

0 ut put Queues 

I 
vIQ I VOQ 

Tagged Output Queue 

Address Filter 

Virtual Input Queue 

Figure 2: VIQ and VOQ schemes. 

In the traditional input queuing scheme, the speed-up 
factor m is usually equal to one since the HOL blocking 
forms a bottleneck for the throughput of the output line. 
Therefore, no gain can be achieved through the use of 
multi-plane switch fabrics (i.e., having a speed-up factor 
m > 1). However, in order to be equivalent to the original 
switch model, the original speed-up factor m (m > 1) is 
kept in the VIQ scheme. Thus, up to  m cells will be se- 
lected during an output contention. On the other hand, in 
the traditional output queuing schemes, some cells may be 
lost if not selected in the output contention. In our VOQ 
scheme, those cells will not be lost. Instead, they can stay 
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in the HOL of the “virtual input queue” which will be ex- 
plained later. Specifically, the VOQ can be viewed as a 
combination of: (1) a group of virtual queues; (2) an ad- 
dress filter to solve output contention; and (3) a tagged 
output queue. Note that, the importance of our “split 
switch” model is not confined to CLR analysis. For ex- 
ample, the cell delay in ATM switch with both input and 
output queues can be obtained by taking the convolution 
of the cell delay in VIQ and VOQ schemes. 

3.2.1 

In the VIQ scheme, we can focus on a single input queue 
i ,  namely a tagged queue, to obtain the CLR estimate. 
Let I, be the length of the tagged queue in the n-th slot. 
We also denote the number of arriving cells at  the tagged 
queue as H ,  and the number of departing cells from the 
tagged queue as G, at  n-th slot. Hence, the state transfer 
equation is given by 

Cell Loss in VIQ Scheme 

I ,  = max{min{K, l,-l + H ,  - G,}, 0) (11) 

where 

Pr(H, = 1) = X (12) 
m 

Pr(G, = 1) = min{l, -} 
Dn (13) 

In Eqn. (13), D, is the number of HOL cells which 
have the same destination as the head of the tagged 
queue. If the cell coming to the tagged queue finds the 
queue full, i.e., I ,  = K ,  then it will be lost. Note that 
although we focus on a single input queue, there exist 
correlations between the HOL cells in different queues. 
Hence, it is difficult to get a closed-form solution to such a 
problem without some independence approximations [3]. 

The IS scheme we developed in VIQ scheme is to bias 
the probability of a cell to be selected in the output con- 
tention. That is, we make the cell in the tagged queue 
less likely to be selected in the output contention. Thus, 
it is more likely to stay in the queue to hold back the 
arriving cells. In brief, this is done as follows: Suppose 
that the head of the tagged queue is destined for output j, 
the cells which are also destined for output j in all input 
queues except the tagged one, i.e., D, - 1 cells, contend 
for (m - 1) winners. Then, only one chance of being se- 
lected exists. After that, all the failing cells in the above 
selection plus the tagged one contend for the last chance. 

Using this procedure, we bias the departure process of 
the tagged queue as follows: 

when 0, 5 m 
Pr*(G, = 1) = {‘I Dn - (m- 1 1) ’ when D, > m (14) 

3.2.2 

Let Ab be the number of cells destined for output port j 
which come to the HOL of input queues in the n-th slot. 
Next, we denote C i  as the number of cells destined for 
output port j in the n-th slot. Then, it follows that 

Cell Loss In VOQ Scheme 

C; = max{ci-, - m, 01 + A A .  (15) 

Now, let’s consider the evolution of the tagged output 
queue and suppose that 0; is the length of the output 
queue j during the n-th slot. Likewise, let S i  denote the 

number of cells which arrive at output j during the n-th 
slot. Then, the process of 0; is given by 

It is clear that S i  will never exceed the speed-up factor 
m and that Si  = C i  if Ci  5 m. Otherwise, m cells will 
be selected from these C; cells. As a result, we have 

when k < m 

otherwise. 
Pr(Ci = I) when k = m (17) 

A close observation of (15)-(17) indicates that the only 
randomness in the system is A i ,  which is in the form of 
a binomial distribution that is given by 

where F, is the total number of cells coming to the HOL 
of all input queues in the n-th slot, i.e., F, = Cy=, AA. 
Intuitively, we can derive the probability mass function 
of A i ,  then we can use some IS schemes to bias it to 
improve the estimation efficiency. However, note that F, 
is not constant but depends on all cell sources, which 
makes it difficult to derive an explicit probability mass 
function of F,. Thereby, making the application of IS 
not straightforward. 

Now, let’s turn to the VOQ scheme. Recall that in this 
case, there is only output queuing. The key problem is to 
generate the cells with the same characteristics as AA in 
the absence of input queues. First, we define the concept 
of “virtual input queue”, which is a logical queue in con- 
trast to the physical input queue in the original switch 
model, but acts just like the physical input queues. The 
name “virtual” is used because in the VOQ scherne of the 
“split switch” model, we assume no queuing at  the switch 

input line. The only goal of the “virtual input queue” is 
to generate the cells with the same statistical properties 
of A i  as stated in (18 That is, it is simply a cell gen- 

scheme as follows. 
erator. Two biasing sc t; emes are developed for the VOQ 

A. Accurate Biasing Scheme 
In the ori inal switch model, An incoming cell is equal 

likely to be jestined for any output port. That is, 

To apply IS, we bias the routing probability such that 
the incoming cells are more likely to be destined for the 
tagged output queue (for simplicity, the tagged output 
queue is labeled as 1). That is, 

(20) 
M 
N 

Pr*(Destination = j )  = -, j = 1 , 2 ,  ..., 

where M is defined as the routing weight. As a result, the 
distribution of AA is biased as 

M k M F n - k  
Pr*(AA = k )  = ( T ) ( N )  (1 - N) . (21) 
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The scheme is called “accurate” since no approxima- 
tion is made here (in contrast to the other biasing scheme 
we formulate below). 

B. Approximate biasing scheme 
In [3], it has been demonstrated that when the dimen- 

sion of ATM switches, N ,  goes to infinity, Ai  is subject 
to a Poisson distribution with rate A. That is, we have (15,33) 

(16,32) 
117.31) 

P r ( A i  = IC) = -. IC! 

Slots(1S) Slots(MC) iency 
8.14 x lo-” 1.9 x lo6  1.5 x l o9  794 
1.27 x lo-’‘ 1.8 x 10‘ 9.8 x 10” 553 
1.98 x lo-’‘ 1.6 x 10’ 6.3 x 10” 407 

Recall that, A i  is the arrival process for a VOQ 
scheme. Therefore, we can use the IS schemes similar 
to those we developed in section 3.1 to bias the “virtual 
input queues”. Such an approximation is reasonable when 
a large-scale ATM switch is considered and/or if only a 
rough estimate is required. 

After obtaining the CLR in VIQ and VOQ schemes re- 
spectively, we can simply add them up, to get the overall 
CLR of the ATM switches as shown in Fig. 3. The simu- 
lation is done in the situation where the total buffer size 
of input and output queue is fixed at 32 so that different 
CLRs are observed in different allocation approaches. It 
seems that more buffers should be allocated to the out- 
put queue than to the input queue in order to achieve the 
lowest CLR. Again, we point out that the IS estimates 
are highly consistent with MC estimates. 

l o - ’ ,  I I * I I I I I I I 

0 MCEstimates 

4 6 8 10 12 14 16 18 20 22 24 
Input Oueue Size 

4 6 8 10 12 14 16 18 20 22 24 
lod” ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 

Input Oueue Size 

Figure 3: CLR of the 1/0 queued ATM Switch. A = 0.8, 
N = 16, m = 2. 

Table 2 contains the computation cost of IS using the 
“split switch” model compared with the MC method ap- 
plied to the original switch model. In order to illustrate 
the potential of IS, the estimates are obtained in the case 
where the total buffer budget is fixed at 48, which makes 
the cell loss more rare compared with the results of Fig. 
3. All the IS estimates are within the 10% accuracy. It is 
clear that the computation gains increase when the CLR 
decreases. 

4 Conclusion 
In this paper, we considered the application of IS to 

the efficient and accurate estimation of the cell loss rate 
of non-blocking ATM switches. In particular, we pre- 
sented various IS methods which were developed using 
our knowledge of the ATM switch operation. We devel- 
oped some new IS schemes for ATM switches with only 

Table 2: The computation gains with IS (A  = 0.8, N = 
16, m = 2 and I( + L = 48) 

I ( K , L )  I ? I Number of I Number of I Effic- I 

output queues, Then, we extended these methods and 
used the notion of “split switch” model to estimate the 
CLR in the more complicated case of ATM switches with 
both input and output queues. The IS estimates obtained 
by the proposed methodologies were shown to be in excel- 
lent agreement with MC simulations. In addition, it has 
been demonstrated that a considerable computation cost 
can be saved using our proposed IS schemes. Finally, we 
plan to extend these results in the future to include more 
realistic traffic models, and to investigate the potential of 
using IS techniques as a realtime method for estimating 
other Quality of service parameters in ATM networks. 

References 
[l] R. Y. Awedeh and H. T. Mouftah, “Survey of ATM 

Switch Architectures,” Computer Networks and ISDN 
Systems 27, pp. 1567-1613, 1995. 

[2] E. W. Zegyra, “Architecture for ATM switching sys- 
tems,” IEEE Commun. Mag., vol. 31, pp. 28-37, Feb. 
1993. 

[3] M. J .  Karol, M. G. Hluchuj and S. P. Morgan, “In- 
put and output queuing on a space-division packet 
switch,” IEEE Trans. on Commun. , vol. 35, pp. 1347- 
1356, Dec. 1987. 

[4] M. J. Lee and David S. Ahn, “Cell loss analysis and 
design trade-offs of nonblocking ATM switches with 
nonuniform traffic,” IEEE/ACM Trans. on Network- 
ing , vol. 3, No.2, pp. 199-209, Apr. 1995. 

[5] Q. L. Wang and V. S. Frost, “Efficient estimate 
of cell loss blocking probability for ATM systems,” 
IEEE/ACM Trans. on Networking, vol. 1, No. 2, pp. 
230-235, Apr. 1993. 

[6] K. Ben. Letaief and K.  Muhammad, “An efficient new 
technique for accurate bit error probability estimation 
of ZJ decoders,” IEEE Trans. Commun., vol. 43, June 
1995. 

[7] J .  A. Freebersyser and J. K. Townsend, “Efficient sim- 
ulation of CLR using standardized ATM connection 
traffic descriptors,” Proc. IEEE lnt .  Conf. Commun., 
ICC ’95, pp. 298-303, June 1995. 

[8] K. Ben. Letaief, “Performance analysis of digital light- 
wave systems using efficient computer simulation tech- 
niques,” IEEE Trans. Commun., vol. COM-43, No. 2, 
pp. 240-251, Feb, 1995. 

[9] G. S. Shedler, “Regenerative stochastic simulation,” 
Academzc Press, INC. , 1993. 

1566 


